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Abstract:  A blind analysis contest has been conducted in conjunction with full-scale 5-story building specimens with 
two damper types in March 2009 at the E-Defense shake-table facility. The purpose of the contest is to stimulate 
development of computational methods and efficient modeling techniques for steel frame buildings with various dampers. 
The building shaking-table was tested repeatedly, inserting and replacing each of four damper types, i.e., steel damper, oil 
damper, viscous damper, and viscoelastic damper. This blind analysis contest is categorized by the combination of two 
damper types (steel and viscous damper) and two analysis types (3-D and 2-D analysis) into four categories. Authors’ 
group participated in all categories, and won first place in the 3-D (viscous damper) and 2-D (viscous damper) categories. 
In this report, we present the methods of modeling and the result of seismic analysis in these two winning categories.  
 
 
 

1.  INTRODUCTION 
Founded as a structural design firm in 1956, Kozo 

Keikaku Engineering Inc., where the authors work at, has 
expanded its line of business to a variety of fields in 
structural design as well as software development that helps 
design flow.  We have entered this contest in all categories, 
aiming to serve test cases for RESP-F3T (our newly-developed 
3D analysis software of general purpose) at the same time. 
Our team has won first place in 2 categories that are 
assigned with viscous dampers in steel building in 3-D and 
2-D model.  In this paper are described the analysis models 
and results of seismic response simulations in these 2 
award-winning categories as well as the technical tips for 
further accuracy improvement.�
 
 
2.  MODEL OF FIVE-STORY STEEL FRAME 

We created the detailed structural model for the blind 
analysis contest using three approaches of modeling principally, 
such as modeling the steel frame building, modeling the 
viscous damper including brace and other members, and 
modeling the viscous damping of steel frame itself (without 
viscous dampers). (Figure 2.1)   First, the steel frame building 
and the viscous damper system were modeled based upon the 
design specification and experimental result of the viscous 
damper distributed by National Research Institute for Earth 
Science and Disaster Prevention (NIED).  The viscous damping 
of steel frame was modeled by our original approach. Instead of 
using the typical damping model, we created a model by 
ourselves, evaluated it and then employed it as analysis model.  
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Figure 2.1  Structural Model (3 – D analysis) 
 

Weight appraisal of the steel building (except the viscous 
damper systems) was determined by the calculation based 
on the design specification, referring to the figures disclosed 
by NIED, which are shown in the parenthesis in the table 
below. (Table 2.1)  

 

Table 2.1  Comparison of the Weight Distribution 
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                                                        ( i ) X-2 Frame          ( ii ) Y-1 Frame 
(a)  Horizontal Plan                        �                (b)  Elevational Plan            

Figure 2.2  5-Story Steel Building with Viscous Dampers 

 
  Table 2.2  Modulus of Eccentricity for 5-Story Steel Building  
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Table 2.1 shows the weight distribution by member 
type.  Compared to the figures we calculated based upon 
the design specification, the figures disclosed by NIED have 
small discrepancies but are all higher than the calculated 
ones with the numerical error of approximate 2 % in every 
story. 

The steel building is installed with viscous dampers as 
shown in Figure 2.2.  The modeling technique of the steel 
building alone shall be described in this chapter. (Modeling 
the viscous damper system is illustrated in the following 
chapter.)  
ぺModel of Steel Elements 

As for the tension strength of columns and girders, yield 
strength of each member was defined based on the 
distributed result of material experiment.  

ぺModel of Concrete 
The compressive strength of concrete was specified with 
the experimental result obtained 90 days after casting. 
(Young modulus: 3.004 × 10 4 N / mm 2) 

ぺComposite Beam Model 
Assuming the girder as a composite beam with slab, its 
section modulus and neutral axis were calculated in 
accordance with “Design Recommendations for Composite 
Constructions” by Architectural Institute of Japan. The 
effective width of slabs was determined with reference to 
Standard for Structural Calculation of Reinforced Concrete 
Structures.  

ぺDescription of Member Model 
Both columns and girders were modeled as beam elements 
and the girder haunch was modeled as rigid zone.  

ぺDetails of the Model of Column Hinge 
M-N correlation was applied to the hinge area of each 
member.  

ぺColumn-Base Model 
The column bases were built as fiber models with 
rotational springs fully fixed. 

ぺModel of Slabs 
Assumption of rigid floor was applied for slab modeling. 
After creating the model with the aforesaid specifications 

for each material, the modulus of eccentricity were obtained 
for steel frame building without damper systems. (Table 2.2)  
The eccentricity of strength was not calculated, assuming 
that the steel frame would stay mostly within the elastic 
region.  As shown in Table 2.2, the eccentricity ratio of 
each story of the steel frame has the maximum value of 
0.043 on the 1st story (X-direction) and 0.02 ~ 0.04 on the 
other stories in each direction.  Having these figures, we 
determined that the steel building for this analysis contest 
scarcely has eccentricity impact.  Therefore, the structural 
models for 2-D and 3-D categories of this blind analysis 
contest were built in 3-D, creating 2-D models from 3-D in 
YZ-plane: Y-direction, Z-direction, and X-rotation (rotation 
with respect to X-axis). The analysis model and method are 
represented in Table 2.3. 
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The column strain was calculated from the axial strain 
and bending strain.  Obtaining the axial strain from the 
axial force of column, and the bending strain by calculating 
the bending moment at the strain gage point shown in Figure 
2.3 based on the bending moment of the base and top of 
column, the column strain was gained by summing those 
values dynamically. 

As shown in Figure 2.3, specifying the strain locations 
at girder as nodal points in the analysis model, the girder 
strain was calculated from the axial force and bending 
moment at those specified nodal points.  The axial strain 
was calculated from axial cross-sectional area of girder with 
consideration of the effective width of slab when it has 
compressive axial force, while it was calculated from the 
axial cross-section of the girder only when it has tensile axial 
force.  The bending strain was calculated respectively for 
each neutral axis of positive and negative moment, and thus 
the section modulus was obtained. 
 
 
3.  MODEL OF VISCOUS DAMPERS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.1  Model of Viscous Damper ( Maxwell Model ) 

 
The viscous damper that is employed for this blind 

analysis contest is called “Non-Linear Maxwell Model”, 
whose dashpot exerts damping force proportional to the 
power of the velocity,  . (Figure 3.1)�  

 
 

 
 
 
 
 
 
 
 
 
 

While the coefficient of damping (Cd) of the viscous 
damper installed in the steel building and  , the power of 
the velocity are provided by its manufacturer, and the stiffness 
of the viscous damper (Kd) was determined in reference to 
the experimental data of the damper alone, we had to 
conjecture the stiffness of the viscous damper Kd at the 
coefficient of damping of Cd = 49 kN/(mm/s)0.38. (Table 3.1) 
Likewise, another model of viscous damper with coefficient 
damping value of Cd = 131 kN/(mm/s)0.38 was also 
distributed (but not installed in the building) as a referential 
data for theorizing the damper stiffness Kd.  Based on all of 
those damper characteristics, the damper stiffness Kd was 
determined. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2  Cd鮾- Kd  Relation of Viscous Dampers 
 

Figure 3.2 represents the correlation between the 
coefficient of damping Cd and the damper stiffness Kd, 
referring to the distributed specimen data of the viscous 
damper.  Having no experiments done, the stiffness of the 
viscous damper Kd at the coefficient of damping of Cd = 49 
kN/(mm/s)0.38� needed to be speculated by the least squares 
method as shown in Figure 3.2.  In this calculation, the 
stiffness Kd corresponding to the model with the coefficient 
of damper of Cd = 49 kN/(mm/s)0.38 (one without any 
experimental data) becomes too small when assuming the 
coefficient of damper Cd and the damper stiffness Kd to have 
linear relation.  Instead, we adopted relation with index 
function to have variants in curvature, which was Kd� = 155 
kN/(mm/s).�
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(b)  Strain Gage at Column鮾

(c)  Strain Gage at Girder鮾(a)  X2-Elevation鮾

Figure 2.3  Specified Point of Strain Frame鮾
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The viscous damper is modeled with components coupled 
in series as shown in Figure3.1.  The total stiffness of the 
viscous damper including brace and other members is calculated 
using Maxwell equations (Eq 3.1) with the stiffness of the 
viscous damper alone Kd , the stiffness of the brace Kb , the 
stiffness of the clevis Kc , and the stiffness of the bracket Kbr. 
(Table 3.2)  

�  
brcbdwellmax KKKKK
1212111

+++=  

Since the viscous damper is connected eccentrically 
from the center line of the girder, the mounting angle was 
tuned by setting additional nodal points in vertical direction 
for columns with consideration for eccentric moment.  The 
gusset plate mounted on the damper on steel frame side is 
connected in series, assessing the stiffness of the plate. 
 
 
4.  SELECTED MODAL DAMPING RATIOS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The viscous damping model of typical low-rise 
buildings is stiffness proportional damping.  If this model 
was applied to the steel frame building of this blind analysis 
contest, the viscous damping would have resulted inevitably 
in high value for higher modes due to the lack of dynamic 
interaction with ground.� Furthermore, the viscous damping 
in Z- direction (vertical) for 1st mode needs to be specified 
at minimum value in order to simulate three directions in X, 
Y, and Z simultaneously.  

 

 

Therefore, Rayleigh damping model was applied, which is 
used relatively in common for high-rise buildings to determine 
the viscous damping for the analysis model. 

Assuming the damping matrix to be proportional to a 
combination of the mass and the stiffness matrices, Eq 4.1 
shall be obtained.  
 
� � � � � [ ] [ ]KaMaC += 10  

Given Eq 4.1, modal damping ratio ( hn ) leads to the following 
relation between two constants ( a0 , a1 ) and one frequency 
(Ιn ) for Rayleigh damping. (Eq 4.2) 
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Once, the damping constants hi , hj regarding the two vibration 
frequency Ιi ,Ιj are specified in Eq 4.2, a set of simultaneous 
equations is established for invariables a0 , a1.   In the other 
words, damping constants hi , hj can be back-calculated by 
specifying the two constants a0 , a1. 

Thus we sought and extracted the constants a0 , a1 that 
have 3%, 3%, 1% as damping ratio of steel frame itself (without 
viscous damper) in X, Y, Z in the first mode, using linear 
programming. (Figure 4.2)  The first modal damping ratio 
for X and Y direction were specified as 3 %, anticipating the 
high damping effect by the relatively high ratio of the 
mounted materials (exterior-wall etc) on the steel frame 
compared to the typical buildings. 

 

 

 

↿ a⇀ 1st mode ( Y-direction ) ↿ b⇀ 2nd mode ( X-direction )

 

 

 

 

↿ c⇀ 3rd mode ( XY-direction ) ↿ d⇀ 11th mode ( Z-direction )

Figure 4.1  Modes of 5-Story Building without Dampers

Table4.1  Periods and Participation Factors for 3-D Model 

Table 3.2  Stiffness of Damper, Brace, Clevis and Bracket
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The value of constants a0 and a1 are detected and extracted 
for targeted damping ratio in 2-D and 3-D models by linear 
programming as shown in Table 4.2.  

 
 

 
 
 
 
 
 
 
 
 
5.  3 – D PREDICTION OF SEISMIC RESPONSE 

Figures 5.2(a) ~ 5.3(b) indicate the maximum response 
acceleration and the maximum story shear force in X and 
Y-direction. (Seismic motion inputs were set as 0.4-scale and 
full-scale wave.) 

As can be seen in Figure 5.2(a), the experimental result 
(dotted line) and the analysis result (solid line) of the 
maximum response acceleration in X-direction are quite 
similar when shaken by 0.4-scale and full-scale of Takatori 
wave.  The distribution in Figure 5.2(b) shows that the 
response acceleration in Y-direction has the same tendency 
as Figure 5.2(a) regardless to the input levels, however, their 
experimental results (dotted line) are much higher than the 
analysis results (solid line) on the top story.  Studying the 
curves of acceleration spectra shown in Figure 5.1(a), the 1st 
natural period of experimental building is conceivably 
slightly shorter than the one of analysis model (Y-direction:T 
= 0.747(s)). 

As for the maximum story shear force represented in 
Figures 5.3(a)(b), the prediction error of the experimental 
result of maximum response acceleration (dotted line) and 
the calculated result (solid line) was directly reflected on the 
analysis value of maximum story shear force, since the 
figures of weight appraisal had very little differences 
between the figures NIED distributed and the one that we 
calculated based on the design specification.  

Figures 5.4(a)魈5.5(b) indicate the maximum response 
displacement and the maximum drift angle in X and 
Y-direction. (Seismic motion inputs were set as 0.4-scale and 
full-scale.)  

Comparing the maximum response displacement in X 
and Y-direction with 0.4-scale as in Figures 5.4(a)(b), the 
analysis result (solid line) is slightly less than the experimental 
result (dotted line).  Nevertheless, the results are quite 
consistent.  On the other hand, the maximum response 
displacement in X-direction with full-scale input is much 
higher in analysis (solid line) than experimental result 
(dotted line).  The displacement spectra tendency in Figure 
5.1(b) and the speculation in Reference 2) indicate that the 
1st natural period of experimental building is shorter than 
the one of analysis model (X-direction:T=0.724(s)) not only 
in Y-direction, but also in X-direction.) 

Studying the tendency of the displacement spectra, we 
have noticed that the maximum response displacement in 
Y-direction is also higher in the region of shorter period than 
the 1st natural period (Y-direction:T=0.747(s)) of analysis 
model when shaken in full-scale of Takatori wave.  Assuming 
the 1st natural period of experimental building is around this 
period range, the discrepancies of experimental result (dotted 
line) and analysis result (solid line) are quite explainable.�  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2  Selected by Modal Damping Ratios 
( Linear Programming Method ) 

Table4.2  Target Modal Damping Ratios in Each Category 

鯗鯔鯗鯗

鯗鯔鯗鯡

鯗鯔鯘鯗

鯗鯔鯘鯡

鯗鯔鯛鯗

鯗鯔鯛鯡

鯗鯔鯗 鯛鯗鯔鯗 鯟鯗鯔鯗 鯢鯗鯔鯗 鯤鯗鯔鯗 鯘鯗鯗鯔鯗 鯘鯛鯗鯔鯗 鯘鯟鯗鯔鯗

龕鮾鯊鰱鰜鰡鯖鰲鰢鰞鯎

∔

鰋鰜鰻鰩鰢鰦鰤鰥鮾鰄鰢鰵鰥鰮鰡↿鰮鰱鰡鰦鰭鰜鰱鰻⇀

鮾鮾鰋鰜鰻鰩鰢鰦鰤鰥鮾鰄鰢鰵鰥鰮鰡
↿ 鰂鰦鰭鰢鰜鰱鮾鰯鰱鰮鰤鰱鰜鰪鰪鰦鰭鰤⇀

鰔鮾鯘鰲鰵鯔鰪鰮鰡鰢

鰓ↀ鰒ↀ鰒鰓鮾鯘鰲鰵鯔鰪鰮鰡鰢

Figure 5.1(a) Acceleration Spectra for the JR Takatori Station Records
           ( Measured Acceleration of the Shaking-Table ) 

Figure 5.1(b) Displacement Spectra for the JR Takatori Station Records
           ( Measured Acceleration of the Shaking-Table ) 
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   Figure 5.2(a) Maximum Response     
   Acceleration in X-Direction 
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  Figure 5.3(a) Maximum Story 
  Shear Force in X-Direction 
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   Figure 5.2(b) Maximum Response     
   Acceleration in Y-Direction 
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    Figure 5.3(b) Maximum Story 
    Shear Force in Y-Direction 
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   Figure 5.4(a) Maximum Response     
     Displacement in X-Direction 
 
 

Ana.( full-scale)
Exp.( full-scale)
Ana.( 0.4-scale)
Exp.( 0.4-scale)

St
or

y

Drift Ang. (rad)

3-D analysis : Viscous damper

0 1/200 1/100 3/200 1/50

1

2

3

4

5

 
    

     Figure 5.5(a) Maximum  
     Drift Angle in X-Direction 
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   Figure 5.4(b) Maximum Response     
     Displacement in Y-Direction 
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    Figure 5.5(b) Maximum  
    Drift Angle in Y-Direction 

 
Presuming that the 1st natural period of experimental 

building is shorter than the one of analysis model, the 
consistency of experimental result (dotted line) and analysis 
result (solid line) in maximum response acceleration as well 
as maximum response displacement for 0.4-scale of Takatori 
wave shown in Figures 5.2(a)(b) and Figures 5.4(a)(b) 
indicate the damping ratio of the steel frame itself (without 
dampers) has been specified slightly too high and it needs to 
be specified for each input level respectively.�

The maximum drift angle shown in Figures 5.5(a)(b) 
have mostly the same prediction error as the maximum response 
displacement in the experimental result (dotted line) and the 
analysis result (solid line).  The maximum drift angle for 
full-scale of Takatori wave, especially, has very little discrepancy 
between the experimental result on 1st story and the one 
immediately upper 1st story (2nd story) compared with the 
analysis results.  Considering above and the fact that the 
story height of 1st story is taller than the other stories, the 
shear deformation ratio can be relatively high as a consequence 
of the loose connection of the pin joint at both edges of dampers, 
which, in fact, is reported in References 2) and 3). 

Figures 5.6(a) ~ 5.9(b) show relations between the axial 
force and deformation of the viscous dampers that installed 
on the 1st and 4th stories in X-2 frame and Y-1 frame as shown 
in Figure 2.2. (Seismic motion inputs were set as 0.4-scale and 
full-scale of Takatori wave.) 

As can be seen in Figures 5.6(a) ~ 5.7(b), the relation of 
axial force and deformation of dampers installed on the 
frames in X and Y-directions for 0.4-scale of Takatori wave 
is quite consistent in the experimental result (dotted line; 

envelop region) and the analysis result (solid line; Hysteresis 
Loop), that is to say, the simulation illustrates the experimental 
outcome with high accuracy. 

Looking at Figures 5.8(a) ~ 5.9(b), the relation of axial 
force and deformation of dampers installed on the frames in 
X and Y-directions for full-scale of Takatori wave has some 
larger analysis deformations (solid line) in X-direction than 
experimental deformations (dotted line), yet, the axial force 
of dampers are simulated fairly accurately.  Moreover, despite 
the prediction error of analysis and experiment on 1st story, 
the relation between axial force and deformation of dampers in 
Y-direction is accurately calculated for the dampers on 4th story. 
 
�  
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Figures shown in Table 5.1 are the respective strain values 

of columns and girders at the gage point specified in Figure 2.3. 
(Seismic inputs were set as 0.4-scale and full-scale of Takatori 
wave.)  The values of column strain in 3-D analysis shown 
in Table 5.1 include modifications in this paper (modified the 
miscalculation by data processing of time historical response 
analysis). 

Table 5.1 Maximum Axial Strain at Column and Girder 
鰕鮾µ鮾鰘

鯝鯒鯵
鯝鯟鯥鯔鯥鮾鰄鰮鰡鰦鰣鰦鰢鰡
鮾鯊鮾鯝鯘鯘鯔鯥鮾鯎

鯣鯝鯗鯔鯢鮾鰄鰮鰡鰦鰣鰦鰢鰡
鯊鮾鯡鯝鯟鯔鯣鮾鯎

鯛鯒鯵 鯛鯣鯥鯔鯣鮾鯊鮾鯝鯘鯘鯔鯥鮾鯎 鯟鯣鯛鯔鯡鮾鯊鮾鯡鯝鯟鯔鯣鮾鯎

鯝鯒鯵 鯝鯘鯣鯔鯥鮾鯊鮾鯛鯛鯣鯔鯛鮾鯎 鯡鯡鯣鯔鯤鮾鯊鮾鯢鯝鯤鯔鯢鮾鯎

鯛鯒鯵 鯝鯛鯗鯔鯛鮾鯊鮾鯛鯛鯣鯔鯛鮾鯎 鯡鯢鯘鯔鯝鮾鯊鮾鯢鯝鯤鯔鯢鮾鯎
鯹鰦鰱鰡鰢鰱

鰉鰮鰲鰦鰵鰦鰮鰭

𩺊鯊鮾鯎鮾鯸鰦鰤鰶鰱鰢鰲鮾鰦鰭鰡鰦鰞鰜鰵鰢鮾鰵鰥鰢鮾鰡鰦鰲鰞鰩鰮鰲鰢鰡鮾鰢鰺鰯鰢鰱鰦鰪鰢鰭鰵鰜鰩鮾鰡鰜鰵鰜鯔

鯗鯔鯟鮾鰲鰞鰜鰩鰢鮾鰹鰜鰷鰢 鯘鯔鯗鮾鰲鰞鰜鰩鰢鮾鰹鰜鰷鰢鯵鰦鰪鰢鰭鰲鰦鰮鰭

鯳鰮鰩鰶鰪鰭
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Figure 5.6(a) Force - Deformation      

Relation of Viscous Damper  
 for 0.4-Scale Wave (1F:X-Direction) 
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Figure 5.7(a) Force - Deformation      

Relation of Viscous Damper 
for 0.4-Scale Wave (4F:X-Direction) 
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Figure 5.6(b) Force - Deformation      

Relation of Viscous Damper 
for 0.4-Scale Wave (1F:Y-Direction) 
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Figure 5.7(b) Force - Deformation      

Relation of Viscous Damper 
for 0.4-Scale Wave (4F:Y-Direction) 
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Figure 5.8(a) Force - Deformation      

Relation of Viscous Damper 
for Full-Scale Wave (1F:X-Direction) 
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Figure 5.9(a) Force - Deformation      

Relation of Viscous Damper 
for Full-Scale Wave (4F:X-Direction) 
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 Figure 5.8(b) Force - Deformation      

Relation of Viscous Damper 
for Full-Scale Wave (1F:Y-Direction) 
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Figure 5.9(b) Force - Deformation      

Relation of Viscous Damper 
for Full-Scale Wave (4F:Y-Direction) 

 
 

The results in Table 5.1 indicate approximate 10-40% 
errors in axial strain of both columns and girders, and the 
highest error can be found in columns in 3-D analysis for 
full-scale of Takatori wave.  On the other hand, the analysis 
result of columns in 3-D with 0.4-scale wave is similar to 
that of experiment.  Besides this, looking back the result of 
maximum story shear force shown in Figure 5.3(a) as well 
as the maximum drift angle in Figure 5.5(a), it is implied 
that the analysis result were higher than the experimental 
result due to the much higher maximum shear force in 
analysis (solid line) than experiment (dotted line) on 1st 
story for full- scale of Takatori wave.   

The girder strain for 0.4-scale wave has higher value in 
analysis than experiment result, while it is less for full-scale 
wave.  This is accountable by studying the result of maximum 
story shear represented in Figure 5.3(b), having that has the 
same correlation between analysis and experimental result. 

Finally, we reported that the analysis results in 2-D 
have few discrepancies with the results in 3-D that are 
shown in this paper.  The experimental results are not 
equivalent to the official data disclosed, but are estimated 
figures based upon the examination outcome in NIED site.  
(http://www.blind-analysis.jp/) 
�

�

6.  CONCLUSIONS 
Reviewing the analysis model and seismic response 

analysis results in 2 award-winning categories (categories 
assigned with viscous dampers in 3-D and 2-D) in this paper, 

we have found useful technical tips in terms of accuracy 
enhancement. 
1) Comparing the 1st natural period of experimental 

building and the one of analysis model, the former tends 
to be shorter than the latter.  This tendency causes 
significant impact on the seismic response analysis result 
of buildings that are within short period region as for 1st 
natural period.  

2) The viscous damper systems including brace and other 
components can be modeled accurately by Maxwell model. 
However, loose connections of the pin joint of damper need 
to be reduced as much as possible in order to maximize 
the damping force of the device as well as to improve the 
accuracy of the simulation. 

3) The viscous damping model of the building that has 
comparatively short first natural period can be optimized 
by applying the individual modal damping� and specifying 
mostly the same damping ratio from 1st to higher modes, 
provided that there isn’t any dynamic interaction (radiation 
damping) with ground at all.  Thus the model can duplicate 
the phenomena accurately. 

4) The viscous damping of the building must be specified in 
accordance with the seismic input level.  The damping 
ratio of the analysis model should be slightly less for 0.4- 
scale than for full-scale of Takatori wave. 

5) The accuracy of 2-D simulation can be as high as 3-D by 
creating 2-D model from 3-D (limited to the two directional 
model), provided the eccentricity (of stiffness or of strength) 
of the building is small.  
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